Course

IGCSE, CBSE, IB, Exam solutions -SAT, ACT, ASSET,RD sharmas

Downloads

contact us

alpha - compass
 

RD Sharma 's CLASS X - CBSE REAL NUMBERS [ PART 1(Q1-Q5) SOLUTIONS - MATHEMATICS]

Thursday, 5 January 2023

                                    


                                                               


 

         RD    SHARMAS  SOLUTIONS

                                                 

                                  REAL NUMBERS 

                                       (PART -1)



QUESTION  1

 Find the LCM and HCF of the following pairs of integers and verify that LCM* HCF = product of the integers;

       i) 26 and 91

       ii)510 and 92

       iii)336 and 54


ANSWER

To find ; LCM and HCF of the following integers

To verify; LCM*HCF =  product of the numbers

   i) 26 and 91

        Let us find the factors of 26 and 91

         26 = 2*13

        91 = 7* 13

      LCM of 26 and 91 =2*7*13

      LCM  of 26 and 91 =182

     HCF  of 26,  and 91 = 182

     we know that LCM*HCF = First number* Second number

       182*13 = 26*91 

        2366 = 2366

Hence verified

                           

     ii) 510 and 92

       Let us first find the factors of 510 and 92

      510 = 2*3*5*7

      92 =2*2*23

      LCM of 510 and 92 =2*2*3*5*23*17

     HCF of 510 and 92 =2

     we know that, LCM* HCF =First Number*Second Number

    23460*2 =510*92

   46920= 46920

   Hence verified

                        

    iii)336 and 54

     Let us first find  the factors of 336 = 2*2*2*2*3*3*3*7

     54 = 2*3*3*3

    LCM of 336 and 54 = 2*2*2*2*3*3*3*7

    LCM  of 336 and 54 =3024

   HCF of 336 and 54 =6

   we know that LCM*HCF =First Number*Second Number

   3024*6 =336*54

   18144 = 18144

   Hence verified

                        


QUESTION 2

 Find the LCM and HCF of the following integers by prime factorization method

   i) 12,15 and 21

   ii) 17,23 and29

   iii) 8,9 and 25

   iv)40,36 and 126

   v) 84,90 and 120

   vi)24,15 and 36


ANSWERS

   i)15,12 and 21

   Let us find the factors of 15,12 and 21

  15=5*3

  12 =2*2*3

  21=3*7

 LCM =2*2*3*5*7

         =420

 HCF =3


 ii)  17,23 and 29

Let us find the factors of 17,23 and 29

 17= 1*17

 23=1*23

29=1*29

LCM=17*23*29

         =11339

HCF= 1


iii)8,9 and 25

Let us first find the factors of 8,9 and 25

 8=2*2*2

9=3*3

25=5*5

LCM =2*2*3*3*5*5

        =1800

HCF=1


iii)40,36 and 126

Let us find the factors of 40,36 and 126

40=2*2*2*5

36=2*2*3*3

126=2*3*3*7

LCM=2*2*3*3*2*5*7

        =2520

HCF=2


iii)84,90 and 120

Let us find the factors of 84,90 and 120

84=2*2*3*7

90=2*3*3*5

120=2*2*2*3*5

LCM= 2*2*2*3*3*5*7

       =2520

HCF=6


iv)24,15 and 36

Let us find the factors of 24,15 and 36

24=2*2*2*3

15=3*5

36=2*2*3*3

LCM=2*2*2*2*3*3*5

        =360

HCF=3


QUESTION 3

Given that HCF(306,657) = 9, find the LCM(306,657)

ANSWER

HCF of two numbers 306 and 657 is 9

To find LCM OF The numbers

 we know that

       LCM*HCF = First Number* Second Number

   LCM*9 =306*657

   LCM  =306*657/9

             =22338


QUESTION  4

Can two numbers have 16 as their HCF and 380 as their LCM? Give reason?

ANSWER

To find; can two numbers have 16 as their HCF and 380  as their LCM

On dividing 380 by 16 we get 23 as quotient and 12 as the remainder

since LCM is not exactly divisible by HCF, two numbers cannot have 16 as their HCF and 380 as their LCM.


QUESTION  5

The HCF of  two numbers is 145 and  their LCM is  2175. If one number is 725,find the other?

ANSWER

Given,

LCM and HCF of two numbers 145 and 2175 respectively

if one number is 725

To find the other number

we know that 

LCM*HCF = First Number*Second Number

2175*145 =725 * Second Number

LCM =2175*145 /725

          =435


                                                                    



                                                                                                                                    

            

  SUMMARY;



0 Comments:

Post a Comment