Course

IGCSE, CBSE, IB, Exam solutions -SAT, ACT, ASSET,RD sharmas

Downloads

contact us

alpha - compass
 

Median formula

Monday 13 February 2023

 


                


              
MEDIAN


MEDIAN

    Median  is a measure of central tendency, which denotes the values of the 

middle most observation in the data . It is the value that divides a data sample, a 

population, or a probability distributions upper and lower halves in statistics and 

probability theory. There are two types of observations - Ungrouped and grouped. 

Median of  an Ungrouped data:

      The Median of an ungrouped data is the number which is in  the middle when 

they are arranged in ascending or descending order .

       If the number  of variates is odd then [(n+1)/2]th  variate is the median

       If the number of variate is even  then (n/2) th variate is the median

       i.e,  if n is odd , Median = [(n+1)/2]th observation.

              if n is even , Median =(n/2)th variate +  (n+1)/2th variate  

                                                                         2

Example: 

Find the median  

          9,7,6,12,13,5,3

solution:

   Firstly ,arrange the data in ascending or descending order

    Ascending order : 3 , 5 ,6 , 7 ,9 , 12 , 13

  here n=7, which is odd

   Therefore Median = (n+1)/2

                                = (7+1) / 2

                                = 4th variate

                                = 7

    

Example:

Find the median :

     12 , 6 , 17,  8, 15, 34 ,13, 22

solution:

  Firstly, arrange the data in ascending or descending order

  Here the no. of variate or observation is an even number.

  so for an even number , Median = [(n/2)th observation +(n+1)/2 th observation ] /2

                                                          = [8/ 2 th observation +  9/2th observation] / 2

                                                          = [4 th +5th observation] /2

                                                          = [8 +15] /2

                                                            = 23/ 2

                                                           = 11.5 

 

Median of a Grouped data:

Median of a grouped data is the data arranged in ascending order and it is the 

middle most value that separates the higher half of the data from the lower half . 

The data is in the form of a frequency distribution table . To find the median of a 

grouped data we have a specific formula . To find median using that formula we 

have to follow some steps:

        1.  Calculate the total no. of observations .

        2. Write down  the class size and divide the data into different sizes.

        3 . Find the cumulative frequency of each data.

        4. Identify the class in which median falls (n/2 lies).

        5. Find the lower limit of the median class(l) and the cumulative frequency of 

the median class (c).

               median formula  for a grouped data is given by:

                                 

                            Median=l+f2Nf×h

         where l = lower limit of the median class.

                    c f = cumulative frequency of the class preceding the median class.

                    n = no. of observations .

                     f = frequency of the median class.

                     h = class width.


Examples;

Find the median class of the following distribution:
Class
Frequency

solution 
     class         frequency             cumulative frequency 
0-10      4         4     
10-20      4       8  
20-30      8      16  
30-40      10        26  
40-50      12       38  
50-60     8        46  
60 -70     4       50

here ,

     N/2 = 50/ 2

           =25

     median class = 30 - 40

     f = 10 (frequency of the median class)

     h = 10 (upper limit - lower limit)

     l = 30 ( median class lower limit) 

     c f =  16  (c f of the class preceding the median class)

         

        Median = l + (N/2-cf) x h

                                f

                      = 30 +(25- 16) x 10

                                    10

                      = 30 +9

                      = 39

Example

The median of the following data is . Find the values of  and , if the total frequency is 
Class intervalFrequency

solution     


Class intervalFrequency (f)Cumulative frequency (c f)
0-10022
100-20057
200-300x7+x
300-4001219+x
400-5001736+x
500-6002056+x
600-700y56+x+y
700-800965+x+y
800-900772+x + y
900-1000476+x + y
Total = 100



It is given that the median is . Clearly, it lies in the class  

 

      
   Now,
Median
=l+f2Ncf×h



     Putting  in , we get 
     Hence, and 


Example

   

A life insurance agent found the following data for the distribution of ages of  policy holders. Calculate the median age, if policies are only given to persons having age  years on wards but less than  years.
Age in yearsNumber of policy holders
Below 20
Below 25
Below 30
Below 35
Below 40
Below 45
Below 50
Below 55
Below 60

 
  solution
  

 Class intervalFrequencyCumulative frequency 
   
   
   
   
   
   
   
   
   
   then, 

The cumulative frequency just greater then  is .

  Median class 

      Here, 


  

  

Find the median of the following distribution
x1234567
f71312821911

 Solution

     Cumulative Frequency
1     
2     
3     
4     
5     
6     
7     
Here 

We find that the cumulative frequency greater than  is  and value of  corresponding to  is 

Hence, 


Example:

 

Calculate the missing frequency from the following distribution, it being given that the median of the distribution is .
Age in years0-1010-2020-3030-4040-50
No. of persons?


             

0 Comments:

Post a Comment