Course

IGCSE, CBSE, IB, Exam solutions -SAT, ACT, ASSET,RD sharmas

Downloads

contact us

alpha - compass
 

Mode

Wednesday 15 February 2023


                                                           




MODE

 The mode is the most number of occurence of a  value in a data. That is it appears 

most frequently in a data. An observation sometimes  have  no mode ,one mode, 

two mode or more than two mode . There are different types of mode. If an 

observation has one mode it is called unimodal. An observation with two mode is 

called bimodal. An observations with three mode,  it is called  trimodal. If it is three 

or more , it is multimodal .It is one of the measure of central tendency. 

Other measures of central tendency are mean and median . 

There is a relation between mean, median and mode.

                  i. e,  MODE = 3 MEDIAN - 2 MEAN

There are two types of data : ungrouped and grouped

Un Grouped data:

In a grouped data or in an individual series ,Mode is defined as the most repeating 

value in an observation or the number that occurs highest number of times


Example:

Find the mode of 

     6, 3, 4 ,5 ,6 , 7, 2,10

Solution:

  Most repeating value in the observation 6, 3, 4 ,5 ,6, 7 , 2, 10 is 6  (repeated 

twice).

                Therefore Mode = 6



Example:

Find the mode of 

   2, 3, 2, 4 , 8, 2, 5, 2, 3 , 7, 3

Solution;

   In this observations there are two numbers repeating 3 times

          So there are two modes: 2 and 3



Example

In a class test in English  students scored  marks  students scored  marks  


scored  marks and  scored  marks the mode for their score is:


solution:

The mode of a set of numbers is the observation that appears most often or is most 


frequent.

From given data:
 students scored marks
 students scored  marks
 students scored  marks
 student scored  marks

     Hence, in the set of numbers  appear most often

      So,  is the mode .

Grouped data or Continous series:

    It is not possible to find the mode of grouped data by looking at the frequencies 

in the distribution table. For finding the mode for a grouped data we have a 

formula. It is given by

                         

Example

Find mode of the following data :
Class-intervalFrequency
80-8533
85-9027
90-9585
95-100155
100-105110
105-11045
110-11515


Solution; 

Here maximum frequency 
whose class is 










     

     Thus, required mode 


 Example;

Find mode of the following data :
Class-intervalFrequency
10 - 204
20 -306
30 -4012
40 -508
50 -605
60 -70 2
70 -803


Solution; 

Here maximum frequency 
whose class is 30 -40




            = 30 + (12- 6) 10 / 2*12 - 6 -8


            =  30  +(6*10) / 24-14


            = 30 + 60/10


            = 36


Thus, required mode 


The empirical relationship between Mean  Median and Mode:

Empirical relationship between mean median and mode for a moderately skewed 

distribution can be given as:

MODE = 3 MEDIAN - 2 MEAN


 Example:

In a moderately skewed distribution, the median is 20 and the mean is 22.5. Using 

these values, find the approximate value of the mode.

Solution:

Given,

    

     Mean = 22.5

   

     Median = 20

  

     Mode = x


     Now, using the relationship between mean mode and median we get,

              

 MODE = 3 MEDIAN - 2 MEAN


     Mode= 3 Median - 2 Mean


     So,

                  x = 3 * 20 – 2 *22.5


                   x = 60 -45

       

                 ∴ x = 15


               So, Mode = 15.

 


Read More:
                 

         

0 Comments:

Post a Comment